Avulsions and Intrusions: The Controversial Displacement Injuries

David J. Kenny, BSc, DDS, PhD • Edward J. Barrett, BSc, DDS, MSc • Michael J. Casas, DDS, MSc

Abstract

Avulsions and intrusions are the most complicated and controversial displacement injuries of permanent teeth. Clinical guidelines published by authorities such as the American Association of Endodontists, the Royal College of Surgeons of England and the International Association of Dental Traumatology are inconsistent. While a certain amount of inconsistency might be expected, some of these guidelines recommend treatments that are experimental or have not incorporated research information from the past 5 years, and in one case the guidelines incorrectly describe the nature of Hank's balanced salt solution. Recent laboratory studies support previous clinical outcome studies in emphasizing that only for teeth replanted within 5 minutes of avulsion is there a chance of regeneration of the periodontal ligament and normal function. Teeth replanted beyond 5 minutes will take another path, that of repair followed by root resorption, ankylosis and eventual extraction. Dentists should explain these outcomes at the time of the replantation decision. Severe intrusions also have predictable outcomes. Teeth intruded beyond 6 mm cannot regenerate a functional periodontal ligament and so are prone to root resorption and eventual extraction as well. In this situation the decision is one of immediate extraction or repositioning, with the understanding that it is inevitable that the tooth will eventually be extracted. Authoritative clinical guidelines available on the Internet provide the clinician with useful outlines for treatment. However, individual inconsistencies stimulate academic controversies and, in some cases, clinical misdirection.

Avulsions and severe intrusions are associated with poor post-treatment outcomes. Management of both avulsions and intrusions is controversial: avulsions present the dilemma of whether or not to replant, whereas intrusions have the widest choice of treatment options. Every trauma intervention should be guided by application of the best scientific evidence integrated with the clinician’s expertise and the values and expectations of patients and their parents. Yet dentists may be “rusty” in both clinical techniques and application of research-based information, primarily because of the rarity of such events. Clinical guidelines should incorporate the best research evidence and techniques, as well as the means to explore the expectations of patients and their parents. This review of recent research and the changing management of avulsions and intrusions identifies the controversies and clarifies clinical options.

Avulsions and Intrusions: The Controversial Displacement Injuries

Guidelines

Guidelines for replantation have been published by a number of organizations such as the American Association of Endodontists (AAE),1 the Royal College of Surgeons of England (RCSE)2 and the International Association of Dental Traumatology (IADT).3 Although there are similarities among them, it is obvious that personal opinion, anecdotal information and caprice are woven into these documents.4 For example, the guidelines for the management of avulsions have not addressed outcomes, the “drive for normalcy” that produces requests for replantation of teeth for which the prognosis is hopeless, the orthodontic implications of replantation into mouths with associated malocclusions and, finally, the direct and indirect costs of the replantation decision.1–3 The guidelines just described
are “trailing edge” documents that at best provide consensus interpretation of research evidence published more than 5 years ago. Nevertheless, such guidelines may reduce the number of inappropriate or cavalier treatments of trauma.\(^5\) The advent of computer-assisted training packages provides yet another means of disseminating consensus-based treatment methods.\(^6\) The AAE,\(^1\) RCSE\(^2\) and IADT\(^3\) guidelines are also available online.

Extra-alveolar Time

Despite evidence that immediate replantation (i.e., within 5 minutes) is required for regeneration of the periodontal ligament (PDL) and its return to normal function,\(^7\) more than three-quarters of school teachers, coaches and caregivers would be reluctant to replant teeth if the circumstance arose.\(^8,9\) The reasons for this reluctance reportedly included inadequate training, reluctance to induce pain or fear in the child, personal fear of bloodborne infection, fear of replacing the tooth incorrectly and fear of possible legal consequences.\(^9\) Recently, attention has focused on the fact that the avulsed tooth (which is essentially a free graft) is often exposed to air or held in tissue or cloth (dry storage) while first aid caregivers search for milk. Laboratory studies have supported earlier clinical studies demonstrating that after dry storage for more than 15 minutes, precursor cells on the root-side PDL are unable to reproduce and differentiate into fibroblasts. Several authors have shown that with 30 minutes of dry storage, virtually all root-side PDL cells have died.\(^10–14\)

Why is it, then, that teeth replanted many hours after avulsion remain in the mouth, often “look good” and are functional? In these cases of delayed replantation, healing occurs by repair rather than by regeneration. Root-side PDL cells that are immediately stored in appropriate media can retain their vitality for extended periods, but become disabled. They lose their ability to become fibroblasts and to perform the normal functions of PDL cells. Consequently, healing is by repair and little or no PDL is regenerated. In addition, PDL cells on the alveolar side are affected by damage associated with physical tearing of the ligament and loss of the tooth, so they too have limited ability to contribute to the regeneration of new PDL.

Storage Media and Root Treatments

For the past decade, laboratory studies of PDL cell vitality have focused on a search for the Holy Grail of storage media, often without consideration of issues of practicality or the blood, tears and confusion that take place when a person is injured by a fall, collision or other misadventure. If the tooth is transferred to a liquid medium beyond 15 minutes of desiccation, the surviving cells will be increasingly limited in both number and function.\(^13\) Cool milk will maintain the ability of PDL precursor cells to reproduce for almost twice as long as milk that is allowed to warm to room temperature.\(^11\) Clearly, milk packed in ice should be considered the primary extended-time storage medium for avulsed teeth intended for delayed replantation, and ice is almost always available where cold milk is found. Guidelines for the choice of storage media and prereplantation “treatment” of avulsed teeth suggest exotic solutions and treatments for which there is limited scientific evidence. Few dental practices stock saline, still fewer have Hank’s balanced salt solution, and virtually none have ViaSpan (DuPont Pharmaceuticals Co., Wilmington, Del.), a tissue culture medium.

For teeth that have undergone an extended extra-alveolar period, most guidelines advocate prereplantation “treatment” of the root surface with fluoride.\(^1–3\) This recommendation is based on a limited number of animal studies and a single case report and is directed toward increasing the resistance of the root to replacement resorption through the formation of fluorapatite on the root surface.\(^16–18\) This treatment has never been tested in a human outcome study, and its clinical utility remains unknown, yet it appears in all 3 guidelines.\(^1–3\) Another treatment that is still advocated on the home page of the AAE Web site\(^1\) and subsequently disproved involved placing teeth with prolonged extra-alveolar time in Hank’s balanced salt solution, a balanced isotonic salt solution, before replantation, with the intent of reconstituting depleted cellular metabolites.\(^19\) Subsequent in vitro experiments have proven (not surprisingly) that root-side cells that are already dead cannot be resurrected by rehydrating them in media such as Hank’s balanced salt solution.\(^20\) Some reputable animal studies (in dogs and monkeys) have supported the use of topical doxycycline “treatment” of teeth before replantation.\(^21,22\) However, topical application is mentioned in one set of guidelines\(^2\) and systemic treatment in another.\(^3\) Furthermore, there are no human outcome studies to support the recommendation of doxycycline treatment for trauma. These treatments, which are only marginally supported by scientific research, are controversial and needlessly complicate clinical management.

Root Resorption

Obtaining a precise and accurate post-trauma, prereplantation history is paramount, as postreplantation outcomes are directly related to extra-alveolar time.\(^7,14\) Careful history-taking may reveal, for example, that a tooth
that has arrived in milk was desiccated in a paper napkin for 15 minutes while someone went for the milk. The clinician should strive for a replanted tooth that is free of infection by early removal of the necrotic pulp and timely completion of endodontic treatment. Elimination of infection and prevention of pulp necrosis represent the best means of preventing inflammatory root resorption (Fig. 1). Replacement resorption and ankylosis may be considered acceptable outcomes, as replanted teeth can survive for a number of years. If, in addition, the patient has achieved physical maturity, infraocclusion and gingival irregularity due to surrounding alveolar growth (Fig. 2) will be minimal. Almost all replanted teeth exhibit replacement resorption and ankylosis, as immediate replantation is achieved only rarely.

Replacement resorption leads to fusion of the tooth root with the adjacent alveolar bone (Fig. 3). In older children and adults this process produces bony replacement of root cementum and dentin, followed by loss of the crown either spontaneously or by surgical intervention. In children who have not achieved skeletal maturity, replacement resorption leads to progressive infraocclusion during the adolescent growth spurt. Adolescents and parents often do not want to have these incisor(s) extracted, yet the alveolar and gingival architecture becomes increasingly distorted with growth. Thus, the decision to replant a permanent tooth initiates a number of sequelae, including some that affect socio-economic aspects of family life.23,24

Evidence that regeneration of a normal PDL is not expected beyond 5 minutes of extra-alveolar dry storage has produced a paradigm shift in understanding the outcomes of replantation. Avulsed teeth fall into 1 of 2 categories: less than 5 minutes of extra-alveolar dry storage, where the likelihood of regeneration of a functional PDL is maximized,7,25 and beyond 5 minutes of dry storage, where healing is by repair and tooth loss is inevitable (although survival may be prolonged if the patient is a young adult).25

Tooth Survival

A previous study26 produced survival curves illustrating tooth survival after replantation in a population of adolescents (Fig. 4). Use of this information in conjunction with a thorough discussion of the financial, temporal and emotional costs of replantation will help clinicians, parents and patients arrive at a rational treatment plan.

Bioactive Substances

Investigators are now working with an enamel matrix derivative, Emdogain (Biora AB, Malmo, Sweden), designed
that a differentiation factor such as Emdogain could promote migration, proliferation and differentiation of PDL fibroblasts within the adjacent alveolus to repopulate the PDL.

There are no published outcome data for Emdogain in the acute management of avulsed teeth. Nevertheless, this material is mentioned in the IADT guidelines as a treatment for replantation. Although the performance of Emdogain on replanted permanent incisors is as yet unknown, the use of such bioactive substances marks the beginning of the use of pharmacotherapeutics in dental trauma management.

Intrusions

Guidelines

Clinicians have noted discrepancies in the recommendations of Andreasen and Andreasen, the RCSE, and Andreasen and others. Even the terminology used to describe the treatment of intrusions and subsequent outcomes lacks precision and consistency. The term *spontaneous eruption* gives a falsely optimistic impression, as tooth movement after injury is both unpredictable and pathological rather than developmental, as it would be in normal eruption. Another imprecise term is *orthodontic repositioning*. The traction forces used to move intruded incisors exceed those of conventional orthodontic treatment, and severely intruded teeth do not have a functional PDL, a prerequisite for orthodontic movement (Figs. 5a, 5b). These terms imply that an intruded tooth will return to its original location with time or that it can be moved there by the same mechanics and with the same predictability as conventional orthodontic treatment, neither of which is necessarily true. Current management strategies include surgical reduction (immediate repositioning), repositioning with traction (active repositioning) and waiting for the tooth to return to its preinjury position (passive repositioning).

Amount of Intrusion as Most Critical Factor

Along with avulsions, intrusions are the other most complicated and controversial luxation injuries. A severe intrusion produces catastrophic injury to the alveolar bone, shears and destroys PDL cells and the ligament itself, and crushes the apical vascular system. Previously it was thought that the stage of root development was the determining factor for the outcome of intruded teeth. Now it appears that the amount of intrusion is the critical determinant of pulp and tooth survival. Some studies have shown that intrusions of up to 3 mm have an excellent prognosis, whereas the prognosis of incisors with severe (> 6 mm)
intrusion is hopeless because of inflammatory root resorption and pulp necrosis.34,35 Although the categories for severity of intrusion used by the RCSE are arbitrary, they approximate the results of a number of studies and provide a framework for outcome prediction (Table 1). Incisors intruded less than 3 mm (RCSE category 1) are best left to reposition themselves (passive repositioning) and have very good prospects for survival, although obturation of the pulp canal and early pulp necrosis are common outcomes.32,34 Incisors intruded between 3 and 6 mm (RCSE category 2) (Figs. 6a, 6b) are unpredictable and can be complicated by crown fractures and pulp necrosis, which lead to inflammatory resorption. Clinicians who use active repositioning or wait for passive repositioning of teeth intruded between 3 and 6 mm must ensure that they can obtain endodontic access within 1–2 weeks to remove the dental pulp and prevent the development of inflammatory root resorption, an unnecessary complication. If active repositioning is chosen, early application of forces is required. Orthodontic brackets or simple composite anchors to a stainless steel wire splint will provide a traction point for active repositioning of the tooth (Figs. 6c, 6d). Incisors intruded beyond 6 mm (RCSE category 3) are firmly held by compressed bone and do not respond predictably to active repositioning. Attempts to actively reposition these intrusions can delay the removal of necrotic pulp, which could lead to inflammatory resorption. Teeth with intrusion beyond 6 mm can be extracted or immediately repositioned, followed by root canal treatment. For severe intrusions, there is no chance of PDL regeneration, as the tooth has essentially been extracted (i.e., there is no PDL) and is held in compressed bone. This presents another option: extraction, removal of the damaged PDL, immediate extraoral root canal treatment and replantation. The outcome here is predictable: ankylosis accompanied by replacement root resorption and eventual loss of the tooth, the same result as would be obtained for an avulsed tooth treated the same way. Although there have been no outcome studies of intruded teeth treated in this manner, the situation is analogous to replantation of avulsed teeth.36

Table 1 Treatment options for intrusions by amount of intrusion

<table>
<thead>
<tr>
<th>Amount of intrusion (mm)</th>
<th>Treatment options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild < 3</td>
<td>Passive repositioning (observation)</td>
</tr>
<tr>
<td>Moderate 3–6</td>
<td>Passive repositioning (observation)</td>
</tr>
<tr>
<td></td>
<td>Active repositioning (immediate traction)</td>
</tr>
<tr>
<td>Severe > 6</td>
<td>Extraction</td>
</tr>
<tr>
<td></td>
<td>Immediate repositioning (surgical reduction)</td>
</tr>
<tr>
<td></td>
<td>Extraction, immediate root canal treatment, removal of</td>
</tr>
<tr>
<td></td>
<td>periodontal ligament, replantation</td>
</tr>
</tbody>
</table>

Categories of the Royal College of Surgeons of England.

Treatment Equivalence

Presently no one treatment method has been demonstrated as superior to the others, and the incidence of pulp necrosis with all methods ranges between 45% and 96%.34,35 However, if active repositioning is chosen, it should begin immediately. The patient and the parents must understand the requirement for compliance with additional appointments and must also accept that success cannot be assured.

Knowledge Base

The mechanism of passive repositioning of intruded teeth is unknown. However, it has been established that appropriate, timely removal of a necrotic pulp followed by conventional root canal treatment will prevent inflammatory root resorption, whereas failure to remove a necrotic pulp stimulates inflammatory root resorption.

The mechanism of PDL regeneration after replantation is not well understood. Teeth replanted after 5 minutes of desiccation will ultimately have to be extracted. The resultant partially or completely resorbed roots will probably be associated with abnormal bone and produce an atypical implant site. Finally, the effects of avulsion and intrusion injuries and the resulting clinical decisions will be a burden on these patients for the rest of their lives.

Prevention

Although the evidence supports the importance of immediate replantation, first aid caregivers are often shy or frightened about replacing a tooth in an upset child. Dentists may be present at some organized sports events, where such injuries often occur, but the steps taken by lay caregivers will determine survival for the majority of avulsed teeth. Dental assistants and hygienists should have the confidence to replant teeth immediately at the scene of an accident, and coaches should be trained and empowered to do the same, through direct education or technique posters.

Parents perceive a shared responsibility with coaches to ensure compliance with mouthguard use.37 One study showed that 40% of dentists favoured stock or “boil and bite” mouthguards, even though they are inferior.38 Investigators are attempting to identify important parameters for protection by standardizing testing (impact) devices and tooth-jaw models. Regardless of the method of testing, laboratory-produced mouthguards of similar thickness provide better cushioning and dissipation of forces than user-fitted “boil and bite” mouthguards, yet even laboratory-produced mouthguards show considerable variation.39

Immediate replantation can affect the survival of an avulsed tooth, and properly fitted mouthguards reduce the severity of dental injury. Dentists can educate and empower
all members of their team to provide first aid care for avulsions and to be vigilant for opportunities to encourage the use of custom mouthguards.

Dr. Kenny is director of dental research and graduate studies and senior associate scientist, Research Institute, The Hospital for Sick Children, and professor, University of Toronto, Toronto, Ontario.

Dr. Barrett is coordinator of dental trauma research, The Hospital for Sick Children, and assistant professor, University of Toronto, Toronto, Ontario.

Dr. Casas is manager of dental trauma research, Blooview MacMillan Children’s Centre, and assistant professor, University of Toronto, Toronto, Ontario.

Correspondence to: Dr. David J. Kenny, Department of Dentistry, The Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8. E-mail: dkenny@sickkids.ca.

The authors have no declared financial interests in any company manufacturing the types of products mentioned in this article.

References

