A review of coronectomy
R. Frafjord & T. Renton
Oral Surgery, Kings College Hospital, London UK

Abstract
Coronectomy or intentional partial odontectomy is a procedure whereby the root(s) of a lower third molar tooth that is deemed close to the inferior alveolar canal on radiographic imaging is left in-situ. Coronectomy is a relatively new procedure and to date there have only been a handful of publications that investigate its effectiveness as a treatment modality. As a result it is still not commonly practiced worldwide. However, coronectomy is gaining popularity as a risk reducing procedure. This article looks at nine most recent studies on coronectomy and reviews each paper with respect to treatment outcomes.

Key words: coronectomy, inferior alveolar, injury, third molar

Introduction
Third molar surgery related inferior alveolar nerve injury (IANI) is reported to occur in up to 3.6% of cases permanently and 8% of cases temporarily. Factors associated with IANI are age, difficulty of surgery and proximity to the inferior alveolar nerve (IAN) canal. If the tooth is closely associated with the IAN canal radiographically, 20% of patients having these teeth removed are at risk of developing temporary IAN nerve injury and 1–4% are at risk of permanent injury.

Contrary to lingual nerve injuries, damage to the IAN may be a calculated risk to be accepted and weighed against the indication for third molar removal. Based on this concept, the justification for prophylactic removal in general has been questioned. Refraining from surgery is the most effective method of nerve injury prevention and the National Institute of Clinical Excellence guidelines in the UK ensure surgery is undertaken only when necessary. However, in the USA 95% of oral surgeons regularly undertake routine prophylactic removal of mandibular third molars resulting in what some describe as a silent epidemic of iatrogenic trigeminal nerve injuries.

If the third molar (or indeed any mandibular tooth) requiring extraction is in close proximity to the IAN, then traditionally panoral radiography has been the mainstay for evaluation.

Radiographic signs indicative of possible IAN risk include:
- Diversion of the canal
- Darkening of the root
- Deflection of the root
- Narrowing of the canal
- Interruption of the canal lamina dura
- Juxta apical area

Assessment of the likelihood of injury depends to a great extent on the quality of preoperative radiographic examination. Three radiological signs were found to be significantly related to nerve injury: (a) diversion of the inferior alveolar canal (b) darkening of the third molar root at the site of over-projection and (c) an interruption of the white line of the mandibular canal. In the presence of one or more radiological signs of warning, the prospect of nerve injury must be discussed with the patient and surgery may be postponed until the advent of absolute indication. One preventive measure might be coronectomy with intentional root retention.

If plain film radiographic risk factors are identified, removal of the third molar will result in elevated risk of
IANI (2% permanent and 20% temporary). The patient must be informed about this elevated risk\(^{1,2,4,5}.\)

The use of cone beam computer tomography

Assessment of high risk third molars using Cone beam computer tomography (CBCT) scanning is becoming more popular as scanners become cheaper and easier to use. The additional radiation the patient receives must be justified clinically. At the present time, there are a number of studies emerging with respect to the usefulness of this new imaging modality. However, evidence is often conflicting, depending on which paper one reads. Some studies show that CBCT is advantageous over plain panoramic views\(^8,9\), while others show no significant difference in specificity or sensitivity between the two imaging modalities\(^{10,11}\). A prospective study by Tantanapornkul *et al.*\(^6\) reported the specificity and sensitivity of CBCT versus panarols in identifying the proximity of the IAN to the tooth roots in 161 mandibular third molars. Results for sensitivity and specificity for CBCT were 93% and 77%, respectively and for panoramic, 70% and 63%. These results were significantly different. Friedland\(^7\) highlighted the benefits of CBCT imaging for the assessment of high risk third molars. Conversely, Ghaeminia *et al.*\(^10\) reported that CBCT was not significantly more sensitive compared with panoramic radiography and Jhamb *et al.*\(^11\) compared spiral CT with panoramic assessment and found no significant differences in 31 teeth. All these studies do however claim that CBCT scanning of high risk teeth will further establish the relationship between the IAN and the roots and may be of some value.

In many cases, the CBCT reaffirms the relationship that would support planned coronectomy if appropriate (but would not change the planned treatment)\(^12\). There are of course some incidences, where despite high risk identification based on plain films, some IANs are found to be distant from the roots using CBCT, which would allow for removal of the tooth rather than planned coronectomy\(^12\). It is evident that further research in the form of randomised controlled trials is needed to further ascertain the risk benefits of CBCT and as to whether it is indicated for treatment planning in these high risk cases.

Based on the authors’ experience, using CBCT may not have a routine role in preoperative assessment for removal of third molars in a unit that regularly undertakes coronectomy procedures as it rarely alters ones treatment plan\(^12\).

Rarely the tooth is distant from the IAN canal based on high risk plane film assessment and would result in a rare change to a planned procedure. However, if the patient is medically compromised or the tooth non-vital and has to be removed then CBCT may play a role in assisting the surgeon to plan the tooth section in order to minimise damage to the IAN\(^13\).

It is common practice for broken fragments of the root of vital teeth to be left in place and most heal uneventfully. Another technique for extraction of a third molar is the deliberate retention of the root adjacent to the nerve, also known as coronectomy\(^13\).

Coronectomy

Coronectomy is an alternative procedure to complete extraction when a tooth is deemed ‘high risk’ but vital and in a patient whom is not medically compromised. Coronectomy avoids inferior alveolar nerve injury by ensuring retention of the vital roots when they are close to the canal (as estimated on radiographs). The method aims to remove only the crown of an impacted mandibular third molar while leaving the root undisturbed, thereby avoiding direct or indirect damage to the IAN. Although coronectomy was first described in 1989\(^1\), only nine relevant studies of this technique have been published to date. These published articles on coronectomy consist of two randomised controlled trials\(^5,14\), two prospective cohort studies\(^15–17\), one case control study\(^18\), two retrospective studies\(^19,20\) and one case series\(^21\) (Table 1). The ninth paper\(^16\) is an update of Pogrel’s retrospective study that follows up a further 409 coronectomy procedures. All studies were of level 3 evidence or above. All papers suggested that the technique had merit and many practitioners should regularly use the coronectomy approach in order to minimise IAN injuries.

Despite these positive reports on coronectomy, this technique is yet to gain popularity because of surgeons’ concerns about the outcomes and short and long-term complications. However, outcomes related to treatment of neurosensory disturbance after wisdom tooth surgery remain variable, so coronectomy, if proven to be safe, could be useful in minimising the occurrence of neurosensory deficit of wisdom teeth that are at high risk of nerve damage.

Coronectomy technique involves using the buccal approach and removal of buccal bone using a fissure bur down to the amelo-dentineal junction (crown root junction). The crown is part sectioned from the root using a fissure bur (into the pulp chamber with lateralisation of the cut ensuring the mesial, distal and lingual margins of the tooth are not breached) and the crown elevated similar to the buccal approach technique. However, the technique may vary and some
<table>
<thead>
<tr>
<th>Paper</th>
<th>Study design</th>
<th>n subjects</th>
<th>Exclusion criteria</th>
<th>Outcome measures</th>
<th>Conclusions</th>
<th>National Institute for Clinical Excellence</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knutsson 1989</td>
<td>Retrospective study, post-op status at one year</td>
<td>33</td>
<td>Not stated</td>
<td>Satisfactory healing, Root movement</td>
<td>27/33 roots migrated. 3/33 had IANI.</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>Freedman 1992</td>
<td>Case series over 6 years</td>
<td>32</td>
<td>Not stated</td>
<td>Need for second operation</td>
<td>24/33 roots healed satisfactorily.</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>Renton et al. 2004</td>
<td>RCT: incidence of IANI, coronectomy versus removal</td>
<td>128 pts XLA 102 Coron 94</td>
<td>Immunocompromised, Systemic infections, Pre.v. IANI Neuromuscular disorders, Non-vital teeth</td>
<td>IANI, Dry socket, Soft tissue infection, Re-operation</td>
<td>Coron more likely to fail in women. 25/1 follow-up sufficient. No increase in side-effects/morbidity with coronectomy</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>O'Riordan 2004</td>
<td>Retrospective study: rate of infection post coronectomy</td>
<td>52, over 10 years</td>
<td>None stated</td>
<td>Questionnaire asking about pain, swelling and infection</td>
<td>1/5: immediate removal. 1/5: pain, swelling 1/12 later 1/5: pain, swelling 1/12 later</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>Pogrel et al. 2004</td>
<td>Prospective cohort study: coronectomy, a technique to protect the IAN</td>
<td>50</td>
<td>Active infection, Mobility</td>
<td>IANI, Primary healing, Root movement</td>
<td>3/50 roots needed removal. 15/50 roots migrated. Mean F/U of 2/212 insufficient increased post op pain in coronectomy. Dry socket inc in XLA group. Longer follow-up needed.</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>Hayano et al. 2009</td>
<td>Case control study: Coronectomy versus XLA in teeth deemed high risk on CBCT</td>
<td>220 pts XLA 118 Coron 102</td>
<td>Existing IANs, Infection, pregnancy, medically compromised, non-vital and immature teeth</td>
<td>IANI, dry socket, pain, infection</td>
<td>IANI in 1 pt in coron group. IANI in 9 pts in control group. Pain and dry socket less in coronectomy group.</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>Leung & Cheung, 2009</td>
<td>RCT: safety of coronectomy versus XLA</td>
<td>231 pts XLA 178 Coron 171</td>
<td>No contact with IDN on DPT, pathology, Immunocompromised pre-existing IANI, orthognathic Sx planned.</td>
<td>Neurosensory deficit, Pain, infection, dry Socket, root migration, re-op.</td>
<td>IANI in 1 pt in coron group. IANI in 9 pts in control group. Pain and dry socket less in coronectomy group.</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Dolanmaz et al., 2009</td>
<td>Prospective cohort study: a preferable technique for protecting the IAN</td>
<td>47</td>
<td>Systemic disorders, acute infection, mobile teeth, horizontal teeth</td>
<td>Root migration, Need for re-op</td>
<td>Root movement at most up to 6/12. Review > 6/12 not needed. No control group as unethical. Coronectomy is an acceptable technique.</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>Pogrel 2009</td>
<td>Prospective cohort</td>
<td>450</td>
<td>Active infection, Mobility</td>
<td>IANI, Primary healing, Root movement</td>
<td>15/450 roots erupted within 1 year 4/450 infection rate. 1/450 permanent IANI</td>
<td>–</td>
<td>3</td>
</tr>
</tbody>
</table>

CBCT, Cone Beam CT; IAN, inferior alveolar nerve; IANI, inferior alveolar nerve injury; IDN, inferior dental nerve; RCT, randomised controlled trial; XLA, extraction under local anaesthetic.
authors recommend complete transection of the crown from the root using a bur. In our experience, we feel this places the lingual nerve at higher risk. On elevation of the crown from the roots, mobilisation of the roots may occur particularly if the patient is young, female and the roots are conical. If the roots are mobilised, they must be removed. Thus, the patient must be consented for coronectomy and/or removal if the roots are mobilised intraoperatively. On exposure of the pulp and immobilised roots, the surgeon must ensure that there is no enamel retained and the use of a rose head bur may be necessary to remove any enamel spurs. The vital pulp should not be instrumented or medicated. Closure of the buccal flap over the roots is achieved with one or two 4/0 vicryl sutures. No antibiotics are recommended. Pre- and postoperative chlorhexidine and good oral hygiene are sufficient. The patient must be warned of possible ‘dry socket’ and to seek treatment if there is persistent pain or swelling also of the possibility of a necessary second procedure for removal of the roots should they become infected or should they erupt later (30% and 5%).

Conclusions

Only two of the six articles were prospective randomised controlled trials, and thus level 1 evidence. The number of patients involved in these studies ranged from 41 to 231. In total, 981 coronectomies were undertaken in these studies.

Review periods

Review periods vary among the nine papers. The shortest mean review period was 9.3 months, followed by 10.6 months, 12 months, 13 months, 22 months, 25 months, 6.5 years and finally 10 years. Pogrel specifically states that 22 months was not a long enough review for this procedure.

Surgical technique

Different surgical techniques have been used in these studies. For example sectioning through the crown was partial by Renton, Leung & Cheung and O’Riordan. Complete section of the crown from the root was undertaken by Pogrel and Dolanmaz. Hatano et al. Knutsson and Freedman and made no reference to specific coronectomy technique. This may explain why there were relatively few root mobilisations in the fully sectioned groups, but may also indicate why so many more roots erupt in the first year postcoronectomy rather than being initially mobilised with partial tooth section. The authors also feel that complete sectioning of the crown from the root may place the lingual nerve at risk and Dolanmaz et al. suggested that complete sectioning may not be necessary.

Surgeons

Pogrel, Dolanmaz, Knutsson and Freedman did not state in their papers the grade of surgeon carrying out the coronectomy procedures. Renton, O’Riordan and Hatano stated that qualified oral surgeons carried out all surgery and Leung & Cheung stated that surgical residents carried out-outpatient treatment.

Inclusion criteria

All papers had lower third molar teeth that appeared high risk on dental panoramic tomography (DPT) or CBCT as their inclusion criteria.

Exclusion criteria

Pogrel, Freedman, Knutsson and O’Riordan did not mention the medically compromised patient in the exclusion criteria. However, there does not seem to be an increased rate of coronectomy failure in their studies. Only 1/50 cases in the Pogrel study failed to heal and required subsequent removal, and in the O’Riordan study 1/53 patients failed to heal immediately.

The other studies excluded patients whom were immunocompromised, pregnant, had systemic infections, previous IANI and neuromuscular disorders. All studies excluded non-vital third molars and Leung & Cheung also specifically excluded no contact with Inferior Dental Nerve (IDN) on DPT, pathology and planned orthognathic surgery. Two studies suggested that horizontal third molars should also be excluded and lack of exclusion of patients with medical compromise may explain the increased root infection rate.

Lingual retraction

Two papers stated that lingual retraction was recommended in all cases to protect the lingual nerve. Pogrel raised a lingual flap and protected the lingual nerve with a retractor to avoid injury. The remaining papers did not use lingual retraction. There is no mention of technique in the Freedman and Knutsson papers. Dolanmaz et al. did not state whether a lingual flap was raised even though a full bur cut was made through the tooth.

Outcome measures

Primary healing, infection pain and swelling were reported outcome measures in six studies.
Re-operation rate was specifically monitored in three studies5,15,17. IAN neuropathy was also specified as an outcome in most studies5,14–16,18. Root movement or migration was specified in four studies5,15–17.

Three out of the nine papers compared outcome measures between extraction and coronectomy5,14,18. All three papers stated that postoperative pain was significantly less after coronectomy. Hatano18 and Leung & Cheung14 used a visual analogue scale to record pain, whereas Renton5 noted a number of patients with pain postoperatively.

Antibiotic protocols

Antibiotics were used in two of the nine studies. Pogrel \textit{et al.}15,16 administered preoperative prophylactic antibiotics to all patients, and Dolanmaz \textit{et al.}17 administered postoperative antibiotics to all patients. Pogrel16 argued that an acute infection rate of less than 1\% when carrying out coronectomy is lower than the normal infection rate after third molar removal. Possible reasons mentioned for this are that all patients take prophylactic antibiotics before coronectomy and that the surgeons are possibly taking ‘extra care’ with these procedures15.

No antibiotics were prescribed by Renton5, and Leung & Cheung14 recommended only pre- and postoperative chlorhexidine mouth wash. The other papers did not mention antibiotics.

Primary closure

Leung and Cheung14, Pogrel16 and Hatano18 stated that they closed the mucoperiosteal flaps primarily postoperatively. Renton5 and Dolanmaz \textit{et al.}17 replaced flaps to normal anatomical position. The remaining papers made no mention of method of flap closure.

Complications (Table 2)

Roots inadvertently removed at the time of attempted coronectomy

Three papers stated a range of 3–9\% of patients failing to achieve coronectomy and the roots needing to be removed at the time of primary surgery16,19,20. One paper noted a 38\% failure rate at primary surgery, because the roots were only sectioned about half way before an attempt was made to remove the crown5. This appeared to mobilise the roots in many cases and did result in an 8\% incidence of temporary IAN involvement with no permanent injuries. In Pogrel’s second report16, 18/450 were failed coronectomies.
whereby the roots were mobilised during the procedure when the crown was elevated. These roots were removed at the same time, and paraesthesia developed in two patients, which was resolved. Renton et al. identified that women below the age of 30 years with conically shaped roots of the third molars were more likely to sustain mobilisation of the roots during coronectomy.

Early post-op infection

Leung & Cheung stated that 9/155 roots became infected and that this was managed with local measures without the need for re-operation. Renton also managed the postoperative infection locally with an incidence of 10–12% infection. O’Riordan stated that 3/52 coronectomies became infected and roots needed to be removed in a second procedure. Freedman had one case out of 33 coronectomies that became infected and required subsequent root removal. Pogrel reported 1/50 case of postoperative infection that required re-operation. In Pogrel’s article, 4/450 cases of acute infection were noted, three of which required re-operation. Knutsson et al. reported 9/33 cases where roots has not satisfactorily healed at 1 year, but no mention of immediate post-op infection was made. Dolonmaz et al. reported no cases of postoperative infection in the 43 coronectomies done.

Root migration

Subsequent root migration is mentioned in all papers with varying values of 5–81% that show later migration of the roots towards the superior border of the mandible. Dolonmaz et al. reported that none of the 43 patients required a second procedure to remove retained roots and Pogrel reported 1/41 patients requiring immediate root removal. Eruption root movement was reported to be at a maximum at 6 months. In some papers, there is no mention of whether any of these roots required removal. In all cases there was radiographic evidence of migration of the retained root away from the canal that may infer that if the roots do require removal at a later stage, then the risk of damage to the IAN will remain reduced. In our clinics, we do not retreat ‘dry sockets’ or persistent infection associated with retained coronectomised roots, but prefer to remove the roots early on.

Two papers mention a 2% and 6% later root removal rate. One paper mentioned that 27% of coronectomies had unsatisfactory healing. Pogrel stated that 30% of roots erupted in first year and required removal with no associated morbidity as all roots had migrated away from the nerve. In every case, this was carried out uneventfully with the patient under local anaesthesia.

Permanent neuropathy

One paper with 38% failed primary coronectomy, noted an 8% temporary IAN involvement with failed coronectomy. Temporary IANI was sustained among 2/450 patients during inadvertent mobilisation of the tooth roots.

Permanent IAN neuropathy was reported, as a result of inadvertent drilling, in 1% of patients in one study. Persistent neuropathy was experienced by 1/50 patients and 1/171 of the coronectomy patients sustained neuropathy compared with 9/171 in the removal group. None of the other studies reported neuropathy with coronectomy. The permanent neuropathy associated with the retained coronectomised roots may be associated with the development of persistent periapical infection postoperatively. The authors recommend that if dry socket occurs more than two times the coronectomised roots should be removed as infective neuritis may occur leading to permanent neuropathy in some cases.

Lingual nerve neuropathy

A 2% transient rate was noted in one study, presumably because of lingual retraction. This is probably a result of the technique whereby the crown is completely sectioned from the root rather than partial section. The other papers do not mention it.

These studies confirm that coronectomy can reduce the incidence of IAN deficit when compared with total excision of wisdom teeth that are in close proximity to the inferior dental canal. There are also fewer complications in terms of pain and dry socket in the healing process of coronectomy, whereas the infection rate is similar to that after total excision of wisdom teeth. The embedded roots tend to migrate 3 mm in the first year postoperatively, and most roots stop migrating after 1 year. Coronectomy appears to be a safe procedure at least in the short term. Longer follow-up is required to determine the fate of the root in the long term.

Consent issues for coronectomy

The patient must be warned of a possible second surgical intervention if complications arise. If a tooth is
non-vital, or associated with pathology, complete tooth removal has to take place and the roots should be sectioned appropriately to minimise trauma to the adjacent IAN. The patient should be warned of a 2% risk of permanent and 20% risk of temporary IANI. Due to the possibility of displacement of roots during elevation of the crown during intended coronectomy, the patient should be warned of intended coronectomy along with the potential risk of root mobilisation that is associated with a higher risk of nerve injury may apply because of necessary root removal.

Need for a second procedure

Once the coronectomy procedure has been completed, there is still a risk of failure of the surgical site to heal. If this occurs, a second surgical procedure is required to remove the retained root. This again, carries with it the risk of 2% permanent and 20% temporary IAN injury and should be discussed with the patient during the consent process.

Thus, all the studies overall concede that the coronectomy technique can minimise IAN injuries in relation to the removal of vital third molars proximal to the IAN canal in non-compromised patients who can be followed up. There is a need for reports on long term evaluation of coronectomy complications.

References

